Flavour Physics:

Quark Masses, Weak Couplings and CP violation in The Standard Model and Beyond

Guido Martinelli INFN Sezione di Roma Università La Sapienza

Dipartimento di Fisica
SAPIENZA
UNIVERSITÀ DI ROMA
Pisa April 23 ${ }^{\text {th }} 2024$

electromagnetic

$$
\begin{aligned}
& \mathcal{L}_{i n t}=-e A^{\mu} J_{\mu}^{e m}-\frac{g_{W}}{2 \cos \theta_{W}} Z^{\mu} J_{\mu}^{Z}-\frac{g_{W}}{2 \sqrt{2}}\left[W^{\mu}\left(J^{W}\right)_{\mu}^{\dagger}+h . c .\right] \\
& \quad J_{\mu}^{Z}=2 J_{\mu}^{3}-2 \sin ^{2} \theta_{W} J_{\mu}^{e m}
\end{aligned}
$$

$$
W_{\mu}\left(J_{W}^{\dagger}\right)^{\mu}+\text { h.c. }=W_{\mu}^{-} \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d+W_{\mu}^{+} \bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) u
$$

Very recently, in an important theoretical development, van Ritbergen and Stuart completed the evaluation of $\mathcal{O}\left(\alpha^{2}\right)$ corrections to τ_{μ} in the local V-A theory, in the limit $m_{e}^{2} / m_{\mu}^{2} \rightarrow 0[7,8]$. Their final answer can be expressed succinctly as

$$
\begin{align*}
C\left(m_{\mu}\right) & =\frac{\alpha\left(m_{\mu}\right)}{\pi} c_{1}+\left(\frac{\alpha\left(m_{\mu}\right)}{\pi}\right)^{2} c_{2} \tag{1}\\
c_{1} & =\frac{1}{2}\left(\frac{25}{4}-\pi^{2}\right) ; \quad c_{2}=6.700 \tag{2}
\end{align*}
$$

In Eq. (1), $\alpha\left(m_{\mu}\right) c_{1} / \pi$ is the one-loop result [1] and $\alpha\left(m_{\mu}\right)$ is a running coupling defined by

$$
\begin{equation*}
\alpha\left(m_{\mu}\right)=\frac{\alpha}{1-\left(\frac{2 \alpha}{3 \pi}+\frac{\alpha^{2}}{2 \pi^{2}}\right) \ln \frac{m_{\mu}}{m_{e}}} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\Gamma= & \frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}}\left[1+C\left(m_{\mu}\right)\right] f\left(\rho^{2}\right)+O\left(\frac{m_{\mu}^{2}}{M_{W}^{2}}\right) \\
& f(z)=1-8 z-12 z^{2} \log z+8 z^{3}-z^{4}
\end{aligned}
$$

Consequences of a Symmetry

$$
[\mathrm{S}, \mathrm{H}]=0 \rightarrow|\mathrm{E}, \mathrm{p}, \mathrm{~s}\rangle
$$

We may find states which are simultaneously eigenstates of \underline{S} and of the Energy

$$
\left|\mathrm{K}_{\mathrm{s}, \mathrm{~L}}{ }^{0}\right\rangle=\alpha\left|\mathrm{K}_{1}{ }^{0}\right\rangle+\beta\left|\mathrm{K}_{2}{ }^{0}\right\rangle
$$

if CP is conserved either $\alpha=0$ or $\beta=0$

the Standard Model

QUARK FAMILIES

$$
\begin{aligned}
\text { 1) } & q_{L} \equiv\left(\begin{array}{l}
u_{L} \\
\text { 2) } \\
d_{L}
\end{array}\right) \\
q_{L} \equiv\left(\begin{array}{l}
U_{R}=u_{R} \\
c_{L} \\
s_{L}
\end{array}\right) & \begin{array}{l}
U_{R}=d_{R} \\
\text { 3) }
\end{array} \\
q_{L} \equiv\left(\begin{array}{l}
D_{R}=s_{R} \\
t_{L} \\
b_{L}
\end{array}\right) & \begin{array}{l}
U_{R}=t_{R} \\
D_{R}=b_{R}
\end{array} \\
Y=1 / 6 & Y_{U, D}=Q_{U, D}=2 / 3,-1 / 3
\end{aligned}
$$

QUARK MASSES ARE GENERATED BY DYNAMICAL SYMMETRY BREAKING

$$
H=\binom{\phi^{+}}{\phi^{0}}, \quad H^{C}=i \tau_{2} H^{*}
$$

$$
\phi^{+} \rightarrow 0 \quad \phi^{0} \rightarrow \frac{V}{\sqrt{2}}
$$

Elementary Particles

$\mathcal{L}^{\text {yukawa }} \equiv \sum_{\mathrm{i}, \mathrm{k}=1, \mathrm{~N}}\left[\mathrm{Y}_{\mathrm{i}, \mathrm{k}}\left(q_{\mathrm{L}}^{\mathrm{i}} \mathrm{H}^{\mathrm{C}}\right) \mathrm{U}_{\mathrm{R}}^{\mathrm{k}}\right.$

$$
\left.+X_{i, k}\left(q_{L}^{i} H\right) D_{R}^{k}+\text { h.c. }\right]
$$

Charge -1/3

$$
\begin{aligned}
& \sum_{i, k=1, N}\left[m_{i, k}^{u}\left(u_{L}^{\top} u_{R}^{k}\right)\right. \\
& \left.\quad+m_{i, k}^{d}\left(d_{L}^{i} d_{R}^{k}\right)+h . c .\right]
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left(m_{u}^{i J}+m_{u}^{J i}\right)^{x} \bar{u}^{i} u^{J} \\
& +\left(m_{u}^{i J}-m_{u}^{J i x}\right) u^{{ }^{i}} \gamma_{s} u^{s}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-\left(m_{u}^{\top i}+m_{u}^{i J x} \bar{u}^{i} u^{\top}+\left(u_{u}^{J i}-\mu_{u}^{i j J^{*}}\right)\right.}{c P \bar{u}\left[m_{u}^{\top}+m_{u}^{x}\right] u-\bar{u}\left[m_{u}^{\top}-m_{u}^{i}\right] \gamma_{s}^{i} \gamma_{s}^{u} u} \\
& m_{u}^{\top}+m_{u}{ }^{*}=m_{u}+m_{u}^{\top}{ }^{*} \\
& -m_{u}{ }^{\top}+M_{u}{ }^{*}=M_{u}-M_{u}{ }^{\top} M_{u}=M_{u}^{*}
\end{aligned}
$$

everything that is not forbidden is allowed

$\sum_{i, k=1, N}\left[m_{i, k}^{u}\left(u_{L}^{\top} u_{R}^{k}\right) \quad+m_{i, k}^{d}\left(d_{L}^{i} \bar{d}_{R}^{k}\right)+h . c.\right]$

It is easy to show the a necessary and

 sufficient condition for CP invariance is$$
\mathrm{m}^{\mathrm{u}, \mathrm{~d}} \mathrm{i}, \mathrm{k}=\text { real }
$$

1) there is no compelling symmetry for $\mathrm{m}^{\mathrm{u}, \mathrm{d}}{ }_{\mathrm{i}, \mathrm{k}}$ to be real 2) in field theory, all that may happen will happen [see below]
2) symmetries and accidental symmetries e.g. separate conservation of lepton and baryon numbers (it follows from gauge symmetry and renormalizability)

DIAGONALIZATION
MAss MATRIX
mon singular $M \quad \operatorname{det} M \neq 0$

$$
M_{D}=U_{L}^{+} M U_{R}
$$

with real and positive eigenvalues

$$
\begin{array}{ll}
M=H U=U^{\prime} H^{\prime} \\
A=M+M & B=M M^{+} \\
A^{+}=A & B^{+}=B
\end{array}
$$

$$
A_{D}=U_{R}^{+} A U_{R}
$$

$$
B_{D}=U_{L}^{+} B U_{L}
$$

unitary matrices U_{R}, U_{L}
$\operatorname{det}(M+M-\lambda)=0$

$$
=\mu^{\operatorname{det}\left(M^{+}-\lambda M^{-1}\right) \operatorname{det} M=\operatorname{det}\left(M M_{-}^{+}-\lambda\right)}
$$

$$
\begin{aligned}
\left(M^{+}\right)^{\prime} M^{\prime}=U_{R}^{+} M^{+} U_{L} U_{L}^{+} M U_{R} & =U_{R}^{+} M+M U_{R} \\
& =A_{D}
\end{aligned}
$$

$$
M^{\prime}\left(M^{\prime}\right)^{+}=U_{L}^{+} M M^{+} U_{L}=B_{D}
$$

$$
M=\frac{M+M^{+}}{2}+i \frac{M-M^{+}}{2 i} \leqslant R+i y
$$

hermitian varices

$$
\begin{aligned}
& {\left[M^{\prime}+M^{+}, M^{\prime}-M^{+}\right]=-\left[M^{\prime}, M^{\prime}\right]} \\
& +\left[M^{+}, M^{\prime}\right]=2\left[M^{+}, M^{\prime}\right]= \\
& 2\left(M^{+} M^{\prime}-M^{\prime} M^{+}\right)=B_{D}-A_{D}=0 \\
& M_{D}^{\prime}=\tilde{U}^{+} M \tilde{U}=\underbrace{\tilde{U}+U_{L}^{+} H U_{R}^{U} \tilde{U}}_{U_{L}^{+}}
\end{aligned}
$$

$$
\begin{aligned}
& M_{D}^{\prime}=U_{L}^{+} M U_{R}= \\
& \mathcal{V} M_{D}\left(\begin{array}{lll}
m_{1} e^{i \delta_{1}} & & \\
& m_{2} e^{i \delta_{2}} & \\
& & m_{N} e^{i \delta_{N}}
\end{array}\right)= \\
& \left(\begin{array}{llllll}
e^{i \delta_{1}} & & & \\
& & e^{i \delta_{2}} & & \\
& & \ddots & \\
& & \ddots & \delta^{i} \delta_{N}
\end{array}\right)\left(\begin{array}{llll}
m_{N} & & & \\
& m_{2} & & \\
& & \ddots & \\
& & & m_{N}
\end{array}\right) \\
& M=H U \quad H=U_{1} H_{D} U_{1}^{+} \\
& H=U_{1} U_{L}^{+} M U_{R} U_{1}^{+} \\
& U_{L} U_{1}^{+} H U_{1} U_{R}^{+}=M \\
& U_{1}=U_{L} \\
& M=H\left(U_{L} U_{R}^{+}\right)=H U \\
& U_{1}=U_{R} \\
& M=\left(U_{L} U_{R}^{+}\right) H=U^{\prime} H
\end{aligned}
$$

Diagonalization of the Mass Matrix

The mass matrix (M) is not even Hermitean;
Up to singular cases, however, it can always be diagonalized by 2 unitary transformations

$$
u_{L}^{i} \square U_{L}^{i k} u_{L}^{k} \quad u_{R}^{i} \square U^{i k}{ }_{R} u_{R}^{k}
$$

$$
M^{\prime}=U_{L}^{\dagger} M U_{R} \quad\left(M^{\prime}\right)^{\dagger}=U_{R}^{\dagger}(M)^{\dagger} U_{L}
$$

$$
\mathrm{L}^{\text {mass }} \equiv \mathrm{m}_{\mathrm{up}}\left(\overline{\mathrm{u}}_{\mathrm{L}} \mathrm{u}_{\mathrm{R}}+\overline{\mathrm{u}}_{\mathrm{R}} \mathrm{u}_{\mathrm{L}}\right)+\mathrm{m}_{\mathrm{ch}}\left(\overline{\mathrm{c}}_{\mathrm{L}} \mathrm{c}_{\mathrm{R}}+\overline{\mathrm{c}}_{\mathrm{R}} \mathrm{c}_{\mathrm{L}}\right)+
$$

$$
\mathrm{m}_{\mathrm{top}}\left(\overline{\mathrm{t}}_{\mathrm{L}} \mathrm{t}_{\mathrm{R}}+\overline{\mathrm{t}}_{\mathrm{R}} \mathrm{t}_{\mathrm{L}}\right)
$$

$\mathrm{L}_{\mathrm{CC}}{ }^{\text {weak int }}=\frac{\mathrm{g}_{\mathrm{W}}}{2 \sqrt{2}}\left(\mathrm{~J}_{\mu}^{-} \mathrm{W}^{+}{ }_{\mu}+\mathrm{J}_{\mu}^{+} \mathrm{W}_{\mu}^{-}\right)$

The Cabibbo-Kobayashi-Maskawa Matrix

$$
\begin{gathered}
\mathrm{J}_{\mu}^{+} \mathrm{W}_{\mu}^{-}=\left(\overline{\mathrm{u}} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{d}+\ldots\right) \mathrm{W}_{\mu}^{-}= \\
\overline{\mathrm{u}}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}} \mathrm{~W}_{\mu}^{-} \rightarrow \overline{\mathrm{u}}_{\mathrm{L}}\left(\mathbf{U}_{\mathbf{L}} \mathbf{u}\right)^{\dagger}{ }_{\mathrm{L}} \gamma_{\mu}\left(\mathbf{U}_{\mathbf{L}}^{\mathbf{d}}\right) \mathrm{d}_{\mathrm{L}} \mathrm{~W}_{\mu}^{-}= \\
\overline{\mathrm{u}}_{\mathrm{L}} \mathbf{V}^{\mathbf{C K M}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}} \mathrm{~W}_{\mu}^{-}
\end{gathered}
$$

where $\mathbf{V}^{\mathbf{C K M}}=\left(\mathbf{U}_{\mathbf{L}}{ }^{\mathbf{u}}\right)^{\dagger}\left(\mathbf{U}_{\mathbf{L}}{ }^{\mathbf{d}}\right)$ is a unitary matrix
With $\mathrm{N}(\mathrm{N}-1) / 2$ Euler angles and $\left[\mathrm{N}^{2}-\mathrm{N}(\mathrm{N}-1) / 2\right]$
phases; not all these phases are physical neutral currents remain diagonal in flavor (no FCNC at tree level)
$\mathrm{u}_{\mathrm{L}} \rightarrow \mathrm{e}^{\mathrm{i} \mathrm{\phi u}} \mathrm{u}_{\mathrm{L}} \quad \mathrm{d}_{\mathrm{L}} \rightarrow \mathrm{e}^{\mathrm{i} \mathrm{\phi d}} \mathrm{~d}_{\mathrm{L}}$ etc. Thus finally we have $\mathrm{N}(\mathrm{N}-1) / 2$ angles and ($\mathrm{N}-1$)($\mathrm{N}-2$)/2 phases

The Cabibbo-Kobayashi-Maskawa Matrix

Up to singular cases, the mass matrix can always be diagonalized by 2 unitary transformations

$$
\begin{aligned}
& u_{L}^{i} \square U^{i k}{ }_{L} u^{k}{ }_{L} \\
& \mathrm{M}^{\prime}=\mathrm{U}^{\dagger}{ }_{\mathrm{L}} \mathrm{M} \mathrm{U}_{\mathrm{R}} \\
& u^{i}{ }_{R} \square U^{i k}{ }_{R} u^{k}{ }_{R} \\
& \left(\mathrm{M}^{\prime}\right)^{\dagger}=\mathrm{U}^{\dagger}{ }_{\mathrm{R}}(\mathrm{M})^{\dagger} \mathrm{U}_{\mathrm{L}} \\
& L^{\text {mass }} \equiv m_{u p}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right)+m_{c h}\left(\bar{c}_{L} c_{R}+\bar{c}_{R} c_{L}\right)+ \\
& \mathrm{m}_{\text {top }}\left(\overline{\mathrm{t}}_{\mathrm{L}} \mathrm{t}_{\mathrm{R}}+\overline{\mathrm{t}}_{\mathrm{R}} \mathrm{t}_{\mathrm{L}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& L_{C C}^{\text {weakint }}=\frac{g_{W}}{\sqrt{2}}\left(J_{\mu}^{-} W_{\mu}^{+}+\text {h.c. }\right) \\
& \quad \rightarrow \frac{g_{W}}{\sqrt{2}}\left(\bar{u}_{L} \mathbf{V}^{C K M_{1}} \gamma_{\mu} d_{L} W_{\mu}^{+}+\ldots\right)
\end{aligned}
$$

Weak Interactions

$$
\mathcal{H}_{e f f}=-\frac{G_{F}}{\sqrt{2}}\left[\bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left[\bar{e} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{e}\right]
$$

$$
i \frac{-g_{\mu \nu}+q_{\mu} q_{\nu} / M_{W}^{2}}{q^{2}-M_{W}^{2}+i \varepsilon} \sim i \frac{g_{\mu \nu}}{M_{W}^{2}} \quad q^{2} \ll M_{W}^{2} \quad \frac{G_{F}}{\sqrt{2}}=\frac{g_{W}^{2}}{8 M_{W}^{2}}
$$

Very recently, in an important theoretical development, van Ritbergen and Stuart completed the evaluation of $\mathcal{O}\left(\alpha^{2}\right)$ corrections to τ_{μ} in the local V-A theory, in the limit $m_{e}^{2} / m_{\mu}^{2} \rightarrow 0[7,8]$. Their final answer can be expressed succinctly as

$$
\begin{align*}
C\left(m_{\mu}\right) & =\frac{\alpha\left(m_{\mu}\right)}{\pi} c_{1}+\left(\frac{\alpha\left(m_{\mu}\right)}{\pi}\right)^{2} c_{2} \tag{1}\\
c_{1} & =\frac{1}{2}\left(\frac{25}{4}-\pi^{2}\right) ; \quad c_{2}=6.700 \tag{2}
\end{align*}
$$

In Eq. (1), $\alpha\left(m_{\mu}\right) c_{1} / \pi$ is the one-loop result [1] and $\alpha\left(m_{\mu}\right)$ is a running coupling defined by

$$
\begin{equation*}
\alpha\left(m_{\mu}\right)=\frac{\alpha}{1-\left(\frac{2 \alpha}{3 \pi}+\frac{\alpha^{2}}{2 \pi^{2}}\right) \ln \frac{m_{\mu}}{m_{e}}} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\Gamma= & \frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}}\left[1+C\left(m_{\mu}\right)\right] f\left(\rho^{2}\right)+O\left(\frac{m_{\mu}^{2}}{M_{W}^{2}}\right) \\
& f(z)=1-8 z-12 z^{2} \log z+8 z^{3}-z^{4}
\end{aligned}
$$

$\mathrm{N}(\mathrm{N}-1) / 2$ angles and $(\mathrm{N}-1)(\mathrm{N}-2) / 2$ phases

$\mathrm{N}=3 \quad 3$ angles +1 phase
 KM

 the phase generates complex couplings i.e. CP violation:6 masses +3 angles +1 phase $=10$ parameters

$\mathbf{V}_{\text {ud }}$	$V_{\text {us }}$	$V_{u b}$
$\mathbf{V}_{\mathbf{c d}}$	$V_{c s}$	$V_{c b}$
$\mathbf{V}_{\text {tb }}$	$V_{\text {ts }}$	$V_{\text {tb }}$

$$
N^{2}-\frac{N(N-1)}{2}-(2 N-1)=\frac{(N-1)(N-2)}{2}
$$

$$
=\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right]
$$

NO Flavour Changing Neutral Currents (FCNC) at Tree Level
(FCNC processes are good candidates for observing NEW PHYSICS)

CP Violation is natural with three quark generations (Kobayashi-Maskawa)

With three generations all CP phenomena are related to the same unique parameter (δ)
Quark masses \& Generation Mixing

$$
\begin{aligned}
& \left|\mathbf{V}_{\text {ud }}\right|=\mathbf{0 . 9 7 3 5 (8)} \\
& \left|\mathbf{V}_{\text {us }}\right|=0.2196(23) \\
& \left|\mathbf{V}_{\text {cd }}\right|=0.224(16) \\
& \left|\mathbf{V}_{\text {cs }}\right|=\mathbf{0 . 9 7 0 (9) (7 0)} \\
& \left|\mathbf{V}_{\text {cb }}\right|=0.0406(8) \\
& \left|\mathbf{V}_{\text {ub }}\right|=\mathbf{0 . 0 0 4 0 9 (2 5)} \\
& \left|\mathbf{V}_{\text {th }}\right|=\mathbf{0 . 9 9 (2 9)} \\
& \left|\mathbf{V}_{\text {td }}\right| \mathbf{(0 . 9 9 9)}
\end{aligned}
$$

updated values next slide

CKM December 2022

Quark

Masses from Lattice QCD

$$
m_{\nu} \leq 1 e V
$$

Input	Lattice/Exp
$m_{u}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})$	$2.20(9) \mathrm{MeV}$
$m_{d}^{\mathrm{MS}}(2 \mathrm{GeV})$	$4.69(2) \mathrm{MeV}$
$m_{s}^{\mathrm{MS}}(2 \mathrm{GeV})$	$93.14(58) \mathrm{MeV}$
$m_{c}^{\mathrm{MS}}(3 \mathrm{GeV})$	$993(4) \mathrm{MeV}$
$m_{c}^{\overline{\mathrm{MS}}}\left(m_{c}^{\overline{\mathrm{MS}}}\right)$	$1277(5) \mathrm{MeV}$
$m_{b}^{\mathrm{MS}}\left(m_{b}^{\mathrm{MS}}\right)$	$4196(19) \mathrm{MeV}$
$m_{t}^{\overline{\mathrm{MS}}}\left(m_{t}^{\overline{\mathrm{MS}}}\right)$ (GeV) to be updated	$163.44(43)$

Table 3 Full lattice inputs. The values of the different quantities have been obtained by taking the weighted average of the $N_{f}=2+1$ and $N_{f}=2+1+1$ FLAG numbers.

Questions

how to extend the SM in order to accommodate neutrino masses?
why neutrino masses are so small, compared with the charged fermion masses?

why lepton mixing angles are so different from those of the quark sector?
\(\left.$$
\begin{array}{rl}U_{P M N S}= & \left.\begin{array}{ccc}\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right)+ \text { corrections }\end{array}
$$ V_{C K M} \approx\left(\begin{array}{ccc}1 \& O(\lambda) \& O\left(\lambda^{4} \div \lambda^{3}\right)

O(\lambda) \& 1 \& O\left(\lambda^{2}\right)

O\left(\lambda^{4} \div \lambda^{3}\right) \& O\left(\lambda^{2}\right) \& 1\end{array}\right)\right\}\)| $\lambda \approx 0.22$ |
| :--- |

There is a clear correlation between mixings and masses

$m_{u} \sim 3 \mathrm{MeV} \quad \mathrm{m}_{\mathrm{c}} \sim 1200 \mathrm{MeV} \mathrm{m}_{+} \sim 170 \mathrm{GeV}$

$m_{d} \sim 7 \mathrm{MeV} m_{s} \sim 110 \mathrm{MeV} m_{b} \sim 4.3 \mathrm{GeV}$
Orizontal Ul(2) : $\Psi_{\mathrm{L}} \quad \Psi_{\mathrm{L}}{ }^{\mathrm{c}}$
$\mathcal{L}_{\text {higgs }}=\frac{\gamma H}{M}\left[\left(\psi_{L}^{a}\right)\left(\psi_{L}^{b}\right)^{c} S^{a b}+\left(\psi_{L}^{a}\right)\left(\psi_{L}^{b}\right)^{c} A^{a b}\right]$
Symmetric tensor

$$
\left.\begin{array}{rl}
M^{d} & =M\left(\begin{array}{cc}
0 & -\sqrt{x} \\
\sqrt{x} & 1+x
\end{array}\right)
\end{array} \begin{array}{c}
\sin \theta_{c} \sim V_{m_{d}} / m_{s} \\
\text { R.Gatto } 70
\end{array}\right] \quad \begin{aligned}
& \operatorname{diag}(M)=M(x, 1) \quad m_{d} / m_{s} \\
& V_{1}
\end{aligned}=\binom{1}{V_{x}} \quad \lambda_{1}=M x \begin{aligned}
& \text { Masses \& } \\
& \text { Mixings } \\
& \text { (including th } \\
& \text { CP phases) } \\
& \text { are related }
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{ij}}=\operatorname{Cos} \theta_{\mathrm{ij}} \quad \mathrm{~s}_{\mathrm{ij}}=\operatorname{Sin} \theta_{\mathrm{ij}} \quad \mathrm{c}_{\mathrm{ij}} \geq 0 \quad \mathrm{~s}_{\mathrm{ij}} \geq 0 \\
& 0 \leq \delta \leq 2 \pi \quad\left|\mathrm{~s}_{12}\right| \sim \operatorname{Sin} \theta_{\mathrm{c}} \\
& \text { for small angles } \quad\left|\mathrm{s}_{\mathrm{ij}}\right| \sim\left|\mathrm{V}_{\mathrm{ij}}\right|
\end{aligned}
$$

The Wolfenstein Parametrization

$V_{t d}$
$\lambda \sim 0.2 \quad$ A ~ 0.8
$\sin \theta_{12}=\lambda$
$\sin \theta_{23}=A \lambda^{2}$
$\sin \theta_{13}=A \lambda^{3}(\rho-i \eta)$
$\eta \sim 0.2 \quad \rho \sim 0.3$

The Bjorken-Jarlskog Unitarity Triangle

 $\left|V_{i j}\right|$ is invariant under phase rotations

$$
\begin{aligned}
& a_{1}=V_{11} V_{12}{ }^{*}=V_{u d} V_{u s}^{*} \\
& a_{2}=V_{21} V_{22}{ }^{*} a_{3}=V_{31} V_{32}{ }^{*}
\end{aligned}
$$

$$
a_{1}+a_{2}+a_{3}=0
$$

$$
\left(b_{1}+b_{2}+b_{3}=0 \text { etc }\right)
$$

Only the orientation depends on the phase convention

Physical quantities correspond to invariants under phase reparametrization ie.
$\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|e_{3}\right|$ and the area of the Unitary Triangles

$$
J=\operatorname{Im}\left(a_{1} a_{2}{ }^{*}\right)=\left|a_{1} a_{2}\right| \operatorname{Sin} \beta
$$

a precise knowledge of the moduli (angles) would fix J

$C P \propto J$

$$
\mathrm{V}_{\mathrm{ud}}{ }^{*} \mathrm{~V}_{\mathrm{bb}}+\mathrm{V}_{\mathrm{cd}}{ }^{*} \mathrm{~V}_{\mathrm{cb}}+\mathrm{V}_{\mathrm{td}}{ }^{*} \mathrm{~V}_{\mathrm{tb}}=\mathbf{0}
$$

$$
\gamma=\delta_{C K M}
$$

$(\bar{\rho}, \bar{\eta})$

The Standard Triangle of the Standard Model

Unitarity:

$$
V_{i b}^{*} V_{u d d}+V_{c b}^{*} V_{c d}+V_{d b}^{*} V_{t d}=0
$$

$\left(\phi_{3}\right) \quad$ Finite Area $\equiv \mathrm{CPV}$

$\left(\phi_{1}\right)$

$(0,0)$

REAL

$(1,0)$

Visualization of the unitarity of the CKM matrix

Unitarity Triangle in the $(\rho-\eta)$ plane

From
A. Stocchi ICHEP 2002

STRONG CP VIOLATION

$$
\begin{aligned}
& L_{\theta}=\theta \tilde{G}^{\mu \nu \mathrm{a}} \mathrm{G}^{\mathrm{a}}{ }_{\mu \nu} \\
& \mathrm{L}_{\theta} \sim \theta \overrightarrow{\mathrm{E}^{\mathrm{a}}} \cdot \overrightarrow{\mathrm{~B}^{\mathrm{a}}}
\end{aligned}
$$

$$
\tilde{\mathrm{G}}^{\mathrm{a}}{ }_{\mu \nu}=\varepsilon_{\mu \nu \rho \sigma} \mathrm{G}^{\mathrm{a}}{ }_{\rho \sigma}
$$

This term violates $C P$ and gives a contribution to the electric dipole moment of the neutron

$$
e_{n}<310^{-26} \mathrm{e} \mathrm{~cm}
$$

$\theta<10^{-10}$ which is quite unnatural !!

Dark Energy 73\%
(Cosmological Constant)

See *several tàlks on axions tomorrow

Neutrinos
0.1 2\%

Neutron electric dipole moment in SuperSymmetry

$\mathcal{L}^{\Delta \mathrm{F}=0}=-\mathrm{i} / 2 \mathrm{C}_{\mathrm{e}} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} \psi \mathrm{~F}^{\mu \nu}$
$-\mathrm{i} / 2 \mathrm{C}_{\mathrm{c}} \psi \sigma_{\mu \nu} \gamma_{5} \mathrm{t}^{\mathrm{a}} \bar{\psi} \mathrm{G}^{\mu v a}$
$-1 / 6 \mathrm{C}_{\mathrm{g}} \mathrm{f}_{\mathrm{abc}} \mathrm{Ga}_{\mu \rho} \mathrm{G}^{\mathrm{b} \rho}{ }_{\nu} \mathrm{G}_{\lambda \sigma} \varepsilon^{\mu \nu \lambda \sigma}$

$\mathrm{C}_{\mathrm{e}, \mathrm{C}, \mathrm{g}}$ can be computed perturbatively

Classification of the processes in the SM

Leptonic Decays the prototype of these decays is given by

$$
\begin{equation*}
\pi^{+} \quad \longrightarrow \mu^{+}+\nu_{\mu} \tag{35}
\end{equation*}
$$

which at the fundamental level is given by

Other possible leptonic decays are given by

$$
\begin{gathered}
K^{+} \longrightarrow \mu^{+}+\nu_{\mu} \\
D^{+} \longrightarrow \mu^{+}+\nu_{\mu} \\
B^{+} \longrightarrow \tau^{+}+\nu_{\tau} \\
\pi^{+} \longrightarrow e^{+}+\nu_{e}
\end{gathered}
$$

the latter process is suppressed by chirality

Semi-leptonic Decays

these are the better sources to measure the absolute values of the CKM matrix elements $\mid \mathrm{V}$ ij \mid
$n \longrightarrow p+e^{-}+\overline{\nu_{e}}$
other possible semi-leptonic decays are the following
$\pi^{+} \longrightarrow \pi^{0}+e^{+}+\nu_{e}$
$K^{+} \longrightarrow \pi^{0}+\mu^{+}+\nu_{\mu}$

$K^{0} \longrightarrow \pi^{-}+\mu^{+}+\nu_{\mu}$

$$
D^{0} \longrightarrow K^{+}+\mu^{+}+\nu_{\mu}
$$

Non-leptonic Decays
Penguins contractions and all that

$$
K^{-} \rightarrow \pi^{-} \pi^{0}
$$

Non-leptonic Decays
Penguins contractions and all that

$$
k^{+} \xrightarrow{0} \pi^{t^{0}} \pi^{0}
$$

Non-leptonic Decays
Penguins contractions and all that

Penguins diagrams

other ops

All Topologies

Figure 1: Non-penguin diagrams. The dashed line represents the four-fermion operator.

All Topologies

Figure 2: Penguin diagrams.
for heavy mesons many particles in the final state

Rare Penguin Radiative Decays

The main issue in this Group Meeting will be represented by $b \rightarrow s$ quark transitions: the best example is offered by the neutral-current semileptonic $B \rightarrow K\left({ }^{*}\right) I+I$ - transitions!

Many interesting properties:

1. Loop-level processes (FCNCs are forbidden at tree level in the Standard Model)
2. CKM-suppressed decays, where

$$
J_{\text {charged }}^{\mu}=\bar{u}_{L}^{i} V_{C K M}^{i j} \gamma^{\mu} d_{L}^{j}+\bar{\nu}_{L}^{i} \gamma^{\mu} \ell_{L}^{i}
$$

Rare transitions!

L. Vittorio (LAPTh \& CNRS, Annecy)
$B^{+} \rightarrow K^{(*)+} \gamma \quad B^{+} \rightarrow K^{(*)+} \mu^{+} \mu^{-}$
since different neutrinos have a mass and they can mix, $\mu \rightarrow e \gamma$ is a possible decay which satisfies
all the symmetry
constraints

$$
\mathcal{B}(\mu \rightarrow e \gamma) \sim \alpha \frac{m_{\nu}^{4}}{m_{W}^{4}} \sim 10^{-52}
$$

note that the photon is emitted by the W boson, analogy radiative B decays

Figura 4: quark process
Radiative Penguins

PENGUINS AND BOXES

Pure leptonic Bs decays

$$
\operatorname{Br}\left(B_{s} \rightarrow l^{+} l^{-}\right)=\tau\left(B_{s}\right) \frac{G_{\mathrm{F}}^{2}}{\pi}\left(\frac{\alpha}{4 \pi \sin ^{2} \Theta_{\mathrm{W}}}\right)^{2} \underset{\text { G. Buchalla and A.J. Buras , Wucl. Phys. } \mathrm{B} \mathrm{400}(1993) \text { 2as. }}{F_{B_{s}}^{2}} m_{l}^{2} m_{B_{s}} \sqrt{1-4 \frac{m_{l}^{2}}{m_{s}^{2}}}\left|V_{t b}^{*} V_{t s}\right|^{2} Y^{2}\left(x_{t}\right)
$$

Many interesting properties:

1. Helicity suppressed
2. Non-perturbative hadronic contributions enter via Bs decay constant

(a)

(b)

(c)

Lowest order

QCD corrections at NLO or NNLO

BOXES

Mixing of Neutral Mesons

$$
\begin{aligned}
K^{0} & \leftrightarrow \bar{K}^{0} \\
D^{0} & \leftrightarrow \bar{D}^{0} \\
B^{0} & \leftrightarrow \bar{B}^{0}
\end{aligned}
$$

in the case of kaons
also charm and up quarks contribute for D and K meson mixing there are important long distance contributions

$$
\begin{aligned}
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{\Delta B=2}= & \frac{G_{\mathrm{F}}^{2}}{16 \pi^{2}} M_{W}^{2}\left(V_{t b}^{*} V_{t q}\right)^{2} \eta_{B} S_{0}\left(x_{t}\right) \times \\
& \times\left[\alpha_{s}^{(5)}\left(\mu_{b}\right)\right]^{-6 / 23}\left[1+\frac{\alpha_{s}^{(5)}\left(\mu_{b}\right)}{4 \pi} J_{5}\right] Q^{q}(\Delta B=2)+\text { h.c. }
\end{aligned} \\
\\
Q C D \text { corrections }
\end{aligned}
$$

$$
\begin{aligned}
& H=\left(\begin{array}{cc}
M & H_{12} \\
H_{21} & M
\end{array}\right) \\
& \text { if } H_{12}=H_{21} \\
& M-\lambda)^{2}-H_{12}^{2}=0 \\
& H_{ \pm}=\lambda_{ \pm}=M \pm H_{12} \\
& \left|K^{+}\right\rangle=\frac{\left|K^{0}\right\rangle+\left(K^{0}\right\rangle}{\sqrt{2}} \\
& \left|K^{-}\right\rangle=\left|\bar{K}^{0}\right\rangle \\
& C P\left|K^{0}\right\rangle=\left|\bar{K}^{0}\right\rangle \\
& C P\left|K^{0}\right\rangle=\left(K^{0}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =A_{u}+A_{c}+A_{t} \\
& =V_{u s} V_{u d}^{*} I_{u}+V_{c s} V_{c d}^{*} I_{c} \\
& +V_{t s} V_{t d}^{*} I_{t}
\end{aligned}
$$

$$
\begin{aligned}
C P\left|k^{+}\right\rangle & =\left|k^{+}\right\rangle \\
C P\left|k^{-}\right\rangle & =-\left(k^{-}\right\rangle \\
C P\left|\pi^{0} \pi^{0}\right\rangle_{S} & =(-1)^{l=0} \underbrace{y^{2}}_{\|^{2}}\left|\pi^{0} \pi^{0}\right\rangle \\
& =\left|\pi^{0} \pi^{0}\right\rangle \quad C P=+\cdots
\end{aligned}
$$

$$
\left.C P\left|\pi^{+} \pi^{-}\right\rangle_{s}=\mid \pi^{+} \pi^{-}\right)_{S}
$$

if $C P$ is Q symedry of the $S M$

$$
\begin{array}{rl}
K^{+} \rightarrow & \pi^{+} \pi^{-}, \pi^{0} \pi^{0} \\
K^{-} \nrightarrow & \pi^{+} \pi^{-}, \pi^{0} \pi^{0} \\
C P=-1 & C P=+1
\end{array}
$$

$$
|k\rangle=\alpha\left|k^{0}\right\rangle+\beta\left|F^{0}\right\rangle
$$

$$
=c_{1} \underbrace{1 k^{+}>}_{t_{00}+\cdots}+c_{2} \mid k^{-})
$$

$$
\tau_{+} \ll \tau_{-}
$$

$\mid k(t))_{=} e_{1} e^{t / t_{+}}\left|k_{+}\right\rangle$
$+c_{2} e^{-t / \tau_{-}}\left|k^{-}\right\rangle$

Indirect CP violation: mixing

$$
\varepsilon_{\mathrm{K}} \quad\left|\mathrm{~K}_{\mathrm{L}}\right\rangle=\left|\mathrm{K}_{2}\right\rangle_{\mathrm{CP}=-1} \quad \mathrm{CP}=+1
$$

$$
\Delta S=2
$$

Box diagrams:
They are also responsible

Complex $\Delta \mathrm{S}=2$ effective coupling

for B^{0} - $\overline{\mathrm{B}}^{0}$ mixing
$\Delta m_{d, s}$

The Effective Hamiltonian, Wilson OPE

and QCD Corrections

$$
\begin{aligned}
& q \sim m_{K} \ll M_{W} \\
& \mathcal{H}_{e f f}=-\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) u\right)\left(\bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right)
\end{aligned}
$$

GENERAL FRAMEWORK: THE OPE

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{FI}}\left(2 \pi^{4}\right) \delta^{4}\left(\mathrm{p}_{\mathrm{F}}-\mathrm{p}_{\mathrm{I}}\right)=\int \mathrm{d}^{4} \mathrm{x} \mathrm{~d}^{4} \mathrm{y} \mathrm{D}_{\mu \nu}\left(\mathrm{x}, \mathrm{M}_{\mathrm{W}}\right) \\
& \langle\mathrm{F}| \mathrm{T}\left[\mathrm{~J}_{\mu}(\mathrm{y}+\mathrm{x} / 2) \mathrm{J}^{\dagger}{ }_{\nu}(\mathrm{y}-\mathrm{x} / 2)\right]|\mathrm{I}\rangle \\
& \langle\mathrm{F}| \mathrm{H}^{\Delta S=1}|\mathrm{I}\rangle= \\
& \mathrm{G}_{\mathrm{F}} / \mathrm{V}_{2} \mathrm{~V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{us}}^{*} \quad \Sigma_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu) \frac{\langle\mathrm{F}| \mathrm{Q}_{\mathrm{i}}(\mu)|\mathrm{I}\rangle}{\left(\mathrm{M}_{\mathrm{W}}\right)^{\mathrm{di}-6}}
\end{aligned}
$$

$d i=$ dimension of the operator $Q_{i}(\mu)$
$C_{i}(\mu)$ Wilson coefficient: it depends on M_{W} / μ and $\alpha_{W}(\mu)$
$\mathrm{Q}_{\mathrm{i}}(\mu)$ local operator renormalized at the scale μ

GENERAL FRAMEWORK

$$
\begin{aligned}
& \mathrm{H}^{\Delta \mathrm{S}=\mathbf{1}}=\mathrm{G}_{\mathrm{F}} / \sqrt{ } 2 \mathrm{~V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{us}}^{*}{ }^{*}\left[(1-\tau) \Sigma_{\mathrm{i}=\mathbf{1 , 2}} \mathrm{z}_{\mathbf{i}}\left(\mathrm{Q}_{\mathbf{i}}-\mathrm{Q}_{\mathbf{i}}^{\mathbf{c}}\right)+\right. \\
& \left.\quad \tau \Sigma_{\mathrm{i}=\mathbf{1 , 1 0}}\left(\mathrm{z}_{\mathbf{i}}+\mathrm{y}_{\mathbf{i}}\right) \mathrm{Q}_{\mathbf{i}}\right]
\end{aligned}
$$

Where y_{i} and z_{i} are short distance coefficients, which are known in perturbation theory at the NLO (Buras et al. + Ciuchini et al.)

$$
\tau=-\mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{us}}{ }^{*} \mathrm{~V}_{\mathrm{ud}}
$$

We have to compute $\mathrm{A}^{\mathrm{I}=0, \mathbf{2}_{\mathrm{i}}=\left\langle(\pi \pi)_{\mathrm{I}=0,2}\right| \mathrm{Q}_{\mathrm{i}}|\mathrm{K}\rangle, ~ . ~}$ with a non perturbative technique (lattice, QCD sum rules, $1 / \mathrm{N}$ expansion etc.)

$\mathrm{A}_{0}=\sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu)\langle(\pi \pi)| \mathrm{Q}_{\mathrm{i}}(\mu)|\mathrm{K}\rangle_{\mathrm{I}=0}\left(1-\Omega_{\mathrm{IB}}\right)$

$\mu=$ renormalization scale μ-dependence cancels if operator

Isospin Breaking matrix elements are consistently computed

$$
\mathcal{A}_{2}=\sum_{i} C_{i}(\mu)\langle(\pi \pi)| Q_{i}(\mu)|K\rangle_{I=2}
$$

$\Omega_{\mathrm{IB}}=0.25 \pm 0.08$ (Munich from Buras \& Gerard) 0.25 ± 0.15 (Rome Group) 0.16 ± 0.03 (Ecker et al.) $0.10 \pm$ 0.20 Gardner \& Valencia, Maltman \& Wolf, Cirigliano \& al.

$$
\begin{aligned}
\mathrm{A}^{\mathrm{I}=0,2}{ }_{\mathrm{i}}(\mu) & =\left\langle(\pi \pi)_{\mathrm{I}=0,2} \mathrm{IQ}_{\mathrm{i}}(\mu) \mathrm{I} \mathrm{~K}\right\rangle \\
& \left.=\mathrm{Z}_{\mathrm{ik}}(\mu \mathrm{a})<(\pi \pi)_{\mathrm{I}=0,2} \mathrm{IQ}_{\mathrm{k}}(\mathrm{a}) \mathrm{I} \mathrm{~K}\right\rangle
\end{aligned}
$$

Where $Q_{i}(a)$ is the bare lattice operator And a the lattice spacing.

The effective Hamiltonian can then be read as: $\langle\mathrm{F}| \mathrm{H}^{\Delta \mathrm{S}=1}|\mathrm{I}\rangle=\mathrm{G}_{\mathrm{F}} / \sqrt{ } 2 \mathrm{~V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{us}}{ }^{*} \Sigma_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(1 / \mathrm{a})\langle\mathrm{F}| \mathrm{Q}_{\mathrm{i}}(\mathrm{a})|\mathrm{I}\rangle$

In practice the renormalization scale (or $1 / \mathrm{a}$) are the scales which separate short and long distance dynamics

GENERAL FRAMEWORK

$\left\langle\mathrm{H}^{\Delta S=1}\right\rangle=\mathrm{G}_{\mathrm{F}} / \sqrt{ } 2 \mathrm{~V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{us}}{ }^{*} \ldots \Sigma_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mathbf{a})\left\langle\mathrm{Q}_{\mathrm{i}}(\mathbf{a})\right\rangle$

$$
\mathrm{M}_{\mathrm{W}}=100 \mathrm{GeV}
$$

Effective Theory - quark \& gluons

$$
\mathrm{a}^{-1}=2-5 \mathrm{GeV}
$$

Hadronic non-perturbative region

$$
\Lambda_{\mathrm{QCD}}, \mathrm{M}_{\mathrm{K}}=0.2-0.5 \mathrm{GeV}
$$

100 GeV

renormalizazion scale μ (inverse lattice spacing $1 / a$); this is the scale where the quark theory is matched to the effective hadronic theory

Scale of the low energy process $\Lambda \ll M_{W}$

THE SCALE PROBLEM: Effective theories prefer low scales, Perturbation Theory prefers large scales
if the scale μ is too low problems from higher dimensional operators (Cirigliano, Donoghue, Golowich)

- it is illusory to think that the problem is solved by using dimensional regularization
on the lattice this problem is called
DISCRETIZATION ERRORS
(reduced by using improved actions and/or scales $\mu>2-4 \mathrm{GeV}$

Weak Hamiltonian for $K \rightarrow \pi \pi$

Weak Hamiltonian is given by local four-quark operator Courtesy by Xu Feng

$$
\mathcal{H}^{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}\right\}, \quad \tau=-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}
$$

- $\tau=-\frac{V_{t t} V_{t s}^{*}}{V_{u d} V_{U s}}=1.543+0.635 i$
- $z_{i}(\mu)$ and $y_{i}(\mu)$ are perturbative Wilson coefficients
- Q_{i} are local four-quark operator

Current-current operator Q_{1}, Q_{2}
dominate $\operatorname{Re}\left[A_{0}\right], \operatorname{Re}\left[A_{2}\right]$

$Q_{3}-Q_{6}$

Electro-weak penguin $Q_{7}-Q_{10}$
Q_{7}, Q_{8} dominate $\operatorname{Im}\left[A_{2}\right]$

New local four-fermion operators are generated

$$
\mathrm{Q}_{3,5}=\left(\bar{s}_{\mathrm{R}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right) \sum_{\mathrm{q}}\left(\overline{\mathrm{q}}_{\mathrm{L}, \mathrm{R}}{ }_{\mathrm{R}}^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{L}, \mathrm{R}}{ }^{\mathrm{B}}\right) \quad \text { Gluon }
$$

$$
\mathrm{Q}_{4,6}=\left(\mathrm{s}_{\mathrm{R}}^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}^{\mathrm{B}}\right) \sum_{\mathrm{q}}\left(\overline{\mathrm{q}}_{\mathrm{L}, \mathrm{R}}^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{L}, \mathrm{R}}^{\mathrm{A}}\right) \quad \text { Penguins }
$$

$\mathrm{Q}_{7,9}=3 / 2\left(\overline{\mathrm{~s}}_{\underline{\underline{R}}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right) \sum_{\mathrm{q}} \mathrm{e}_{\mathrm{q}}\left(\overline{\mathrm{q}}_{\underline{\mathrm{R}, \mathrm{L}}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{R}, \mathrm{L}}{ }^{\mathrm{B}}\right)$ Electroweak $\mathrm{Q}_{8,10}=3 / 2\left(\overline{\mathrm{~s}}_{\mathrm{R}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right) \sum_{\mathrm{q}} \mathrm{e}_{\mathrm{q}}\left(\mathrm{q}_{\mathrm{R}, \mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{R}, \mathrm{L}}{ }^{\mathrm{A}}\right) \quad$ Penguins

+ Chromomagnetic and electromagnetic operators

$$
\mathfrak{A}(K \rightarrow \pi \pi)=\sum_{i} C_{W}^{i}(\mu)\langle\pi \pi| O_{i}(\mu)|K\rangle
$$

$$
\begin{aligned}
& \mathrm{Q}_{1}=\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{u}_{\mathrm{L}}{ }^{\mathrm{B}}\right)\left(\overline{\mathrm{u}}_{\mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right) \quad \text { Current-Current } \\
& \mathrm{Q}_{2}=\left(\overline{\mathrm{S}}_{\mathrm{L}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{u}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\overline{\mathrm{u}}_{\mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right)
\end{aligned}
$$

C \times Violation in the Neutral Kaon System

Expanding in several "small"

 quantities$$
\eta^{00}=\frac{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{W}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{W}\left|K_{S}\right\rangle} \quad \sim \varepsilon-2 \varepsilon^{\prime}
$$

$$
\eta^{+-}=\frac{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{W}\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{\mathrm{W}}\left|\mathrm{~K}_{\mathrm{S}}\right\rangle} \sim \varepsilon+\varepsilon^{\prime}
$$

Conventionally:

$$
\begin{aligned}
& \left|\mathrm{K}_{\mathrm{S}}\right\rangle=\left|\mathrm{K}_{1}\right\rangle_{\mathrm{CP}=+1}+\varepsilon\left|\mathrm{K}_{2}\right\rangle_{\mathrm{CP}=-1} \\
& \left|\mathrm{~K}_{\mathrm{L}}\right\rangle^{\prime}=\left|\mathrm{K}_{2}\right\rangle_{\mathrm{CP}=-1}+\varepsilon\left|\mathrm{K}_{1}\right\rangle_{\mathrm{CP}=+1}
\end{aligned}
$$

Indirect CP violation: mixing

ε_{K}

$$
\left|\mathrm{K}_{\mathrm{L}}\right\rangle=\left|\mathrm{K}_{2}\right\rangle_{\mathrm{CP}=-1}
$$

$$
\mathrm{CP}=+1
$$

Box diagrams:
They are also responsible
Complex $\Delta \mathrm{S}=2$ effective coupling
for B^{0} - $\overline{\mathrm{B}}^{0}$ mixing
$\Delta m_{d, s}$

$$
\begin{aligned}
& \begin{array}{l}
\varepsilon_{\mathrm{K}} \mid \sim \mathrm{C}_{\varepsilon} \mathrm{A}^{2} \lambda^{6} \sigma \sin \delta \\
\left\{\mathrm{~F}\left(\mathrm{x}_{\mathrm{c}}, \mathrm{x}_{\mathrm{t}}\right)+\mathrm{F}\left(\mathrm{x}_{\mathrm{t}}\right)\left[\mathrm{A}^{2} \lambda^{4}(1-\sigma \cos \delta)\right]-\mathrm{F}\left(\mathrm{x}_{\mathrm{c}}\right)\right\} \\
\mathrm{B}_{\mathrm{K}}
\end{array} \\
& \begin{array}{ll}
\eta=\sigma \sin \delta \quad \rho=\sigma \cos \delta & \begin{array}{l}
\text { Inami-Lin } \\
\text { Functions + QCD } \\
\text { Corrections (NLO) }
\end{array}
\end{array}
\end{aligned}
$$

$$
\mathrm{G}_{\mathrm{F}}^{2} \mathrm{M}_{\mathrm{W}}^{2} \mathrm{M}_{\mathrm{K}} \mathrm{f}^{2}{ }_{\mathrm{K}}
$$

$$
\mathrm{C}_{\varepsilon}=\frac{6 \sqrt{2} \pi^{2} \Delta \mathrm{M}_{\mathrm{K}}}{}
$$

$\left\langle\overline{\mathrm{K}^{0}}\right|\left(\overline{\mathrm{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{d}\right)^{2}\left|\mathrm{~K}^{0}\right\rangle=8 / 3 \mathrm{f}_{\mathrm{K}}{ }_{\mathrm{K}} \mathrm{M}_{\mathrm{K}}^{2} \mathrm{~B}_{\mathrm{K}}$

$B^{0}-B^{0}$ mixing

$$
\mathrm{H}_{\mathrm{eff}}^{\Delta \mathrm{B}=2}=\left(\begin{array}{ll}
\mathrm{H}_{11} & \mathrm{H}_{12} \\
\mathrm{H}_{21} & \mathrm{H}_{22}
\end{array}\right) \text { (}
$$

$$
\begin{aligned}
\propto & \left(\overline{\mathbf{d}} \gamma_{\mu}\left(1-\gamma_{5}\right) b\right)^{2} \quad \begin{array}{l}
\text { Hadronic matrix } \\
\text { element }
\end{array} \\
\Delta \mathrm{m}_{\mathrm{d}, \mathrm{~s}} & =\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{M}_{\mathrm{W}}^{2}}{16 \pi^{2}} \mathrm{~A}^{2} \lambda^{6} \mathrm{~F}_{\mathrm{tt}}\left(\frac{\mathrm{~m}_{\mathrm{t}}^{2}}{\mathrm{M}_{\mathrm{W}}^{2}}\right)<O>
\end{aligned}
$$

Direct CP violation: decay

$$
\left|\mathrm{K}_{\mathrm{L}}\right\rangle=\left|\mathrm{K}_{2}\right\rangle_{\mathrm{CP}}{ }^{2}=-1
$$

Complex $\Delta \mathrm{S}=1$ effective coupling

$$
\mathrm{L}^{\mathrm{CP}}=\mathrm{L}^{\Delta \mathrm{F}=0}+\mathrm{L}^{\Delta \mathrm{F}=1}+\mathrm{L}^{\Delta \mathrm{F}=2}
$$

$\Delta F=0$
$\mathrm{d}_{\mathrm{e}}<1.510^{-27} \mathrm{e} \mathrm{cm}$
$\mathrm{d}_{\mathrm{N}}<6.310^{-26} \mathrm{e} \mathrm{cm}$

> | $\Delta \mathbf{F}=\mathbf{1}$ | $\varepsilon^{\prime} / \varepsilon$ |
| :--- | :---: |
| + B decays | (see later) |

$\mathbf{F}=\mathbf{2}$	ε	and	$\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$

The extraordinary progress of the experimental

 measurements requires accurate theoretical predictionsPrecision flavor physics requires the control of hadronic effects for which lattice QCD simulations are essential

$Q^{E X P}=V_{C K M}\langle F| \hat{O}|I\rangle$

$Q^{E X P}=\sum_{i} C_{S M}^{i}\left(M_{W}, m_{t}, \alpha_{s}\right)\langle F| \hat{O}_{i}|I\rangle+\sum_{i^{\prime}} C_{B e y o n d}^{i}{ }^{\prime}\left(\tilde{m}_{3}, \alpha_{s}\right)\langle F| \hat{O}_{i^{\prime}}|I\rangle$
BSM
What can be computed and what cannot be computed

Leptonic (π, K, D, B)

(some) Radiative and Rare long distance effects (also $K->\pi l^{+}-$)

Non-leptonic
$B->\pi \pi, K \pi$, etc. No ! but only below the inelastic threshold (may be also
3 body decays)

type

type

Neutral meson mixing (local)

+ some long distance contributions to K and D neutral meson mixing + short distance contributions to $B->K^{(*)} l^{+} l^{-}$

INCLUSIVE DECAYS ONTHE LATTICE

Inclusive processes impractical to treat directly on the lattice. Vacuum current correlators computed in euclidean space-time are related to $e^{+} e^{-} \rightarrow$ hadrons or τ decay via analyticity. In our case the correlators have to be computed in the B meson, but analytic continuation more complicated: two cuts, decay occurs only on a portion of the physical cut.

While the lattice calculation of the spectral density of hadronic correlators is an illposed problem, the spectral density is accessible after smearing
Hansen, Meyer, Robaina, Hansen, Lupo, Tantalo, Bailas, Hashimoto, Ishikawa

LATTICE vs OPE

$m_{b}^{k i n}(\mathrm{JLQCD})$	2.70 ± 0.04
$\bar{m}_{c}(2 \mathrm{GeV})(\mathrm{JLQCD})$	1.10 ± 0.02
$m_{b}^{k i n}(\mathrm{ETMC})$	2.39 ± 0.08
$\bar{m}_{c}(2 \mathrm{GeV})(\mathrm{ETMC})$	1.19 ± 0.04
μ_{π}^{2}	0.57 ± 0.15
ρ_{D}^{3}	0.22 ± 0.06
$\mu_{G}^{2}\left(m_{b}\right)$	0.37 ± 0.10
$\rho_{L S}^{3}$	-0.13 ± 0.10
$\alpha_{s}^{(4)}(2 \mathrm{GeV})$	0.301 ± 0.006

OPE inputs from fits to exp data (physical mb), HQE of meson masses on lattice I704.06 I05, J.Phys.Conf.Ser. I I 37 (2019) I, 0 I 2005

We include $O\left(1 / m_{b}^{3}\right)$ and $O\left(\alpha_{s}\right)$ terms Hard scale $\sqrt{m_{c}^{2}+\mathbf{q}^{2}} \sim 1-1.5 \mathrm{GeV}$ We do not expect OPE to work at high $|\mathbf{q}|$

Twisted boundary conditions allow for any value of \vec{q}^{2}
Smaller statistical uncertainties

Evaluating hadronic amplitudes on the lattice through the spectral representation

Giuseppe Gagliardi, INFN Sezione di Roma Tre
R. Frezzotti, V. Lubicz, G. Martinelli, F. Mazzetti, C.T. Sachrajda,
F. Sanfilippo, S. Simula, N. Tantalo

ETMC meeting, 8-10 February 2023, Bern.

Gagliardi - Pisa February 2023

Radiative decays

$D_{s}^{ \pm} \rightarrow l^{\prime+} l^{\prime-} l^{ \pm} \nu_{l}$ decays

$$
\text { The } P^{+} \equiv \bar{D} \gamma^{5} U \rightarrow l^{\prime+} l^{\prime-} l^{+} \nu_{l} \text { decays }
$$

- Diagram (b) is perturbative, only QCD input is decay constant f_{P}.
- Diagram (a) is non-perturbative. Virtual photon γ^{*} emitted from either a U-type or a D-type quark line. For $P^{+}=D_{s}^{+}: U=c, D=s$.

Non-perturbative QCD contribution encoded in the hadronic tensor

$$
H_{W}^{\mu \nu}(k, \boldsymbol{p})=\int d^{4} x e^{i k \cdot x}\langle 0| T\left[J_{\mathrm{em}}^{\mu}(x) J_{W}^{\nu}(0)\right]|P(\boldsymbol{p})\rangle, \quad W=V, A
$$

- $k=\left(E_{\gamma}, \boldsymbol{k}\right)$ is photon 4-momentum, \boldsymbol{p} is P-meson 3-momentum.
- We neglect $\operatorname{SU}(3)$-vanishing quark-line disconnected diagrams.
$\sin 2 \beta$ is measured directly from $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$ decays at Babar \& Belle

$$
\mathrm{A}_{\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}}=\frac{\Gamma\left(\mathrm{B}_{\mathrm{d}}{ }^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)-\bar{\Gamma}\left(\mathrm{B}_{\mathrm{d}}{ }^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)}{\Gamma\left(\mathrm{B}_{\mathrm{d}}{ }^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)+\bar{\Gamma}\left(\mathrm{B}_{\mathrm{d}}{ }^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)}
$$

$$
\mathrm{A}_{\mathrm{J} / \nu \mathrm{K}_{\mathrm{c}}}=\sin 2 \beta \sin \left(\Delta \mathrm{~m}_{\mathrm{d}} \mathrm{t}\right)
$$

DIFFERENT LEVELS OF THEORETICAL UNCERTAINTIES (STRONG INTERACTIONS)

1) First class quantities, with reduced or negligible uncertainties

$$
\begin{gathered}
A_{C P}\left(B \rightarrow J / \psi K_{s}\right) \underset{K^{0} \rightarrow \pi^{0} v \bar{v}}{\gamma \operatorname{from}} B \rightarrow D K \\
K^{2}
\end{gathered}
$$

2) Second class quantities, with theoretical errors of $\mathrm{O}(10 \%)$ or less that can be reliably estimated

$$
\begin{aligned}
\varepsilon_{K} & \Delta M_{d s} \\
\Gamma(B \rightarrow c, u), & K^{+} \rightarrow \pi^{+} v \bar{v}
\end{aligned}
$$

3) Third class quantities, for which theoretical predictions are model dependent (BBNS, charming, etc.)
are model dependent (BBNS,
In case of discrepacies we cannot tell whether is new physics or we must blame the model

$$
\begin{aligned}
& B \rightarrow K \pi \quad B \rightarrow \pi^{0} \pi^{0} \\
& B \rightarrow \phi K_{s}
\end{aligned}
$$

$$
2
$$

-

$$
x_{2}^{2}+2
$$

Flavour Physics

1963: Cabibbo Angle
1964: CP violation in K decays * 1970 GIM Mechanism
1973: CP Violation needs at least three quark families (CKM) *
1975: discovery of the tau lepton $3^{r d}$ lepton family *
1977: discovery of the b quark $3^{\text {rd }}$ quark family *

2003/4: CP violation in B meson
decays \quad * Nobel Prize

Discoveries from Flavor Physics

CP Violation

- the tiny branching ratio of the decay $K_{L} \rightarrow \mu^{+} \mu^{-}$!! led to the prediction of the charm quark to suppress FCNCs (Glashow, Iliopoulos, Maiani 1970)
- the measurement of the frequency of kaon anti-kaon oscillations allowed a successful prediction of the charm quark mass
(Gaillard, Lee 1974)
(direct discovery of the charm quark in 1974 at SLAC and BNL)
- the observation of CP violation in kaon anti-kaon oscillations led to the prediction of the 3rd generation of quarks (Kobayashi, Maskawa 1973)
- the measurement of the frequency of $B-\bar{B}$ oscillations allowed to predict the large top quark mass (various authors in the late 80's)
(direct discovery of the bottom quark in 1977 at Fermilab) (direct discovery of the top quark in 1995 at Fermilab)

the Standard Model and beyond

Vacuum
Energy

$\mathcal{L}=\Lambda^{4}+\Lambda^{2} H^{2}+\lambda H^{4}+$
$\left(D_{\mu} H\right)^{2}+\bar{\psi} \not D \psi+F_{\mu \nu}^{2}+F_{\mu \nu} \tilde{F}_{\mu \nu}$ Strong $\not \subset \varnothing$

$$
Y H \bar{\psi} \psi+\frac{1}{\Lambda}(\bar{L} H)^{2}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i} O_{i}+\ldots
$$

Flavor puzzle

Neutrino Masses

New Physics
Possible breaking of accidental symmetries

The Standard Model

$S U(3) \times S U(2) \times U(1)_{Y}$

Higgs + gauge principle

from elegance to caos !!

If we are looking for the suspect that could be hiding

 some secret obviously the higgs is the one!

Hints of NP structure: Flavor symmetries of the SM

- Standard Model (SM) gauge sector is flavor blind!

$$
\mathscr{G}_{F}(\mathrm{SM})=U(3)^{5} \equiv U(3)_{q} \times U(3)_{u} \times U(3)_{d} \times U(3)_{\ell} \times U(3)_{e}
$$

$$
\mathscr{G}_{F}(\mathrm{SM})=U(1)_{B} \times U(1)_{L}
$$

The Weirdness of the Standard Model

- Three families
"who ordered that ?" I. Rabi

- Fundamental breaking of Parity

- 10 d 1 ctivity: 3 gauge couplings +16 higgs couplings (+7 higgs-neutrino) !
+ the coupling θ of strong CP violation
"has too many arbitrary features for [its] predictions
to be taken very seriously" S. Weinberg '6'7

$3 g_{i}+\left(\lambda, M_{H}\right)+6 m_{q}+3 m_{\ell}+\delta+3 \theta_{C K M}+\theta_{Q C D}=19$
electromagnetic

$$
\begin{aligned}
& \mathcal{L}_{i n t}=-e A^{\mu} J_{\mu}^{e m}-\frac{g_{W}}{2 \cos \theta_{W}} Z^{\mu} J_{\mu}^{Z}-\frac{g_{W}}{2 \sqrt{2}}\left[W^{\mu}\left(J^{W}\right)_{\mu}^{\dagger}+h . c .\right] \\
& \quad J_{\mu}^{Z}=2 J_{\mu}^{3}-2 \sin ^{2} \theta_{W} J_{\mu}^{e m}
\end{aligned}
$$

$$
W_{\mu}\left(J_{W}^{\dagger}\right)^{\mu}+\text { h.c. }=W_{\mu}^{-} \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d+W_{\mu}^{+} \bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) u
$$

for Hemiticity $g_{1}=g_{2}$

$$
\mathcal{L}=g_{1} W_{\mu}^{-} \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d+g_{2} W_{\mu}^{+} \bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) u \quad g_{1} \neq g_{2}
$$

$$
\begin{array}{r}
{\left[W_{\mu}^{-} \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right]^{\dagger}=W_{\mu}^{+} d^{\dagger}\left[\left(\gamma^{\mu}\right)^{\dagger}\left(\gamma^{0}\right)^{\dagger}-\left(\gamma_{5}\right)^{\dagger}\left(\gamma^{\mu}\right)^{\dagger}\left(\gamma^{0}\right)^{\dagger}\right] u=W_{\mu}^{+} d^{\dagger}\left[\gamma^{0}\left(\gamma^{0}\left(\gamma^{\mu}\right)^{\dagger} \gamma^{0}\right)-\gamma_{5} \gamma^{0}\left(\gamma^{0}\left(\gamma^{\mu}\right)^{\dagger} \gamma^{0}\right)\right] u} \\
\left.\left(\gamma^{0}\left(\gamma^{\mu}\right)^{\dagger} \gamma^{0}\right)=\gamma^{\mu} \quad=W_{\mu}^{+} \bar{d}\left[\gamma^{\mu}\right)-\gamma^{\mu} \gamma_{5}\right] u
\end{array}
$$

$$
\begin{gathered}
\mathcal{L}=g_{\omega}\left[\begin{array}{c}
w_{\mu}^{-} \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d+w_{\mu}+\bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) u \\
h e r u \gamma_{i c i} f_{y}
\end{array}\right] \\
P^{+} \mathscr{P} P=g_{\omega}\left[w_{\mu}^{-} \bar{u} \gamma^{\mu}\left(1+\gamma_{5}\right) d+w_{\mu} \neq \bar{d} \gamma^{\mu}\left(1+\gamma_{5}\right) u\right]
\end{gathered}
$$

pority violarim

$$
c^{+} \mathcal{L} C=g_{\omega}\left[w_{\mu}^{+} \bar{d} \gamma^{\mu}\left(1+\gamma_{5}\right) u+w_{\mu}^{-} \bar{u} \gamma^{\mu}\left(1+\gamma_{5}\right) d\right]
$$

change con J vislation
$(C P)^{+} \mathcal{L}(C P)=\mathcal{L} \quad C P$ cougerved

Relativistic

Quantum Mechanics

Antimatter CPT Theorem

CP Violation was discovered about 37 years ago in K^{0} - $\overline{K^{0}}$ mixing
(weak interactions)

In the Standard Model the quark mass matrix, from which the CKM Matrix and CP originate, is determined by the Yukawa Lagrangian which couples fermions and Higgs

$\mathcal{L}^{\text {quarks }}=\mathcal{L}^{\text {kinetic }}+\mathcal{L}^{\text {weak int }}+\mathcal{L}^{\text {yukawa }}$

CP invariant

CP and symmetry breaking are closely related!

In 1967 Andrei Sakharov pointed out that, for the universe to evolve from the initial matter-antimatter fireball to the present matter antimatter asymmetric state, 4 conditions must be fulfilled:

$$
\begin{aligned}
& \text { 1) Baryon number violation } \Delta \mathrm{B} \neq 0 \text { (GUT ??) } \\
& \mathrm{e}^{+}+\overline{\mathrm{d}} \rightarrow \mathrm{X} \rightarrow \mathrm{u}+\mathrm{u} \quad(\Delta(\mathrm{~B}-\mathrm{L})=0)
\end{aligned}
$$

Lepton number violation is possible but not necessary and could be zero
$\quad-\bar{d} \rightarrow \mathrm{X} \rightarrow \mathrm{u}+\mathrm{u}) \neq \Gamma\left(\mathrm{e}^{-}+\mathrm{d} \rightarrow \mathrm{X} \rightarrow \mathrm{u}^{-}+\overline{\mathrm{u}}\right)$
$\Gamma\left(\mathrm{e}^{+}+\mathrm{d} \rightarrow\right.$ symmetry violation
3) CP violation: the number of left handed up quarks produced by X
must be different from the number of right handed up antiquarks
4) The universe was not in equilibrium when this happened, otherwise if $\Gamma\left(\mathrm{e}^{+}+\mathrm{d} \rightarrow \mathrm{u}+\mathrm{u}\right)>\Gamma\left(\mathrm{e}^{-}+\mathrm{d} \rightarrow \overline{\mathrm{u}}+\overline{\mathrm{u}}\right)$ then

$$
\Gamma\left(\mathrm{u}+\mathrm{u} \rightarrow \mathrm{e}^{+}+\mathrm{d}\right)>\Gamma\left(\overline{\mathrm{u}}+\overline{\mathrm{u}} \rightarrow \mathrm{e}^{-}+\mathrm{d}\right)
$$

$$
\begin{array}{r}
\langle B\rangle=\operatorname{Tr}\left[e^{-\beta H} B\right]=\operatorname{Tr}\left[(C P T)(C P T)^{-1} e^{-\beta H} B\right] \\
\quad=\operatorname{Tr}\left[e^{-\beta H}(C P T)^{-1} B(C P T)\right]=-\langle B\rangle
\end{array}
$$

Neutrino Decoupling
 nuCB

Photon Decoupling

CMB

Nucleosynthesis

light elements

Wimp (?) BAU

$$
\begin{aligned}
& \mathrm{p}^{+}+\mathrm{n}^{0} \longrightarrow{ }_{1}^{2} \mathrm{D}+\gamma \\
& { }_{1}^{2} \mathrm{D}+{ }_{1}^{2} \mathrm{D} \longrightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{n}^{0} \\
& { }_{1}^{3} \mathrm{~T}+{ }_{1}^{2} \mathrm{D} \longrightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{n}^{0} \\
& { }_{2}^{3} \mathrm{He}+\mathrm{n}^{0} \longrightarrow{ }_{1}^{3} \mathrm{~T}+\mathrm{p}^{+} \\
& { }_{2}^{3} \mathrm{He}+{ }_{2}^{4} \mathrm{He} \longrightarrow{ }_{4}^{7} \mathrm{Be}+\gamma \\
& { }_{4}^{7} \mathrm{Be}+\mathrm{n}^{0} \longrightarrow{ }_{3}^{7} \mathrm{Li}+\mathrm{p}^{+}
\end{aligned}
$$

Primordial Nucleosynthesis

Big Bang Nucleosynthesis (BBN) began approximately 1 second into the Big Bang and lasts for about 3 minutes. BBN is the only window into the conditions of the early universe before the CMB. During this epoch, the temperature is optimal for the formation of light nuclei, resulting in the synthesis of $\mathrm{D},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$, and ${ }^{7} \mathrm{Li}$. The story begins with all of the energy in the universe condensed into a single point. Suddenly, it exploded outwards and the universe was born. As it expanded, it cooled and began to form matter.

The amount of C1, discovered in 1964 in mixing (see below) is however too small to explain the scarcity of antimatter in the universe.

Baryon Number Violation \& CP Violation in the Standard Model

$$
\partial_{\mu} J_{B}^{\mu}=\frac{\partial \rho_{B}}{\partial t}-\vec{\nabla} \cdot \vec{J}_{B}=\frac{N_{f}}{32 \pi^{2}}\left(g_{W}^{2} W_{\mu \nu}^{a} \tilde{W}_{a}^{\mu v}-g_{Y}^{2} B_{\mu \nu} \tilde{B}^{\mu v}\right)
$$

$$
\text { classically } \quad \frac{d Q_{B}}{d t}=0 \quad Q_{B}=\int d^{3} x \rho_{B}(\vec{x}, y)
$$

quantum \& non perturbative effects

$\Gamma \sim e^{-16 \pi^{2} / g_{W}^{2}} \sim e^{-165}$

$$
T=0
$$

$T \gg E_{E W}$

$$
\begin{aligned}
& \frac{\Gamma_{B+L}}{V} \sim \alpha_{e m}^{5} \log \alpha_{e m}^{-1} T^{4} \\
& T \gg T_{e w} \sim 250 \mathrm{GeV} \quad \alpha_{e m} \sim \frac{1}{137, \ldots .}
\end{aligned}
$$

$$
u+d \rightarrow d+2 \bar{d}+\bar{c}+2 b+\bar{t}+p_{\varepsilon}+D_{\mu}+D_{\tau}
$$

$$
\begin{aligned}
& \text { Weak Couplings, } \\
& \text { Quark Masses } \\
& \text { and } \\
& \text { CP Violation in } \\
& \text { the Standard Model }
\end{aligned}
$$

Some General Consideration:

Discrete Symmetries C P T:

1) Charge Conjugation
2) Parity
3) Time reversal

All violated at the quantum level
CPT conserved in a local relativistic quantum field theory (vacuum)

$$
\begin{aligned}
& S=\bar{\psi}_{1} \psi_{2} \\
& P=\bar{\psi}_{1} \gamma_{5} \psi_{2} \text { poentoscalar } \\
& \begin{array}{c}
V_{\mu}=\left(V_{0}, \vec{V}\right) \quad V^{\mu}=\left(V_{0},-\vec{V}\right) \quad \text { vector } \\
\longrightarrow \bar{\psi}_{1} \gamma_{\mu} \psi_{2}
\end{array} \\
& A_{\mu}=\bar{\psi}_{1} \gamma_{\mu} \gamma_{s} \psi_{2} \quad \text { asial vector } \\
& \frac{T_{\mu \nu}=\mathscr{F} \sigma_{\mu \nu} \not \psi_{2} \times \quad \text { Kensor }}{P_{\text {Paily }} \quad V_{0} \rightarrow V_{0} \quad \vec{V} \rightarrow-V} \\
& \hat{P}+\psi(\vec{x}, t) \hat{P}=P_{\alpha \beta} \psi_{\beta}(-\vec{x}, t) \\
& \hat{P}^{2}=\underline{I} \quad \hat{P}^{+}=\hat{P} \quad Y P=\gamma^{0} \\
& S \rightarrow S \quad R \rightarrow-\mathbb{R} \\
& V_{\mu} \rightarrow V^{\mu} \quad A_{\mu} \rightarrow-A^{\mu} \\
& \tilde{V}_{i}=\bar{\psi}_{1} \sigma_{0 i} \psi_{2} \rightarrow-\tilde{V}_{i} \quad \tilde{A}_{i}=\epsilon_{i j k} \bar{\psi}_{1} \sigma^{j k} \psi_{2} \rightarrow \tilde{A}_{i} \quad i, j, k=1,2,3
\end{aligned}
$$

$$
\begin{aligned}
& \psi=a_{e^{-}}^{r} e^{-i p x} u_{r}(p)+\left(b^{+}\right)_{e^{+}}^{r} e_{\uparrow}^{i p x} v_{r}(p) \quad\left(A_{\mu} C_{\text {phortan }}=-A_{\mu}\right.
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\prime}\left(\psi_{c}\right)_{\alpha}=\left(c^{+} \psi c\right)_{\alpha}=e_{\alpha \beta} \psi_{\beta}^{*} \\
& \hat{e}^{2}=\hat{I} \quad \hat{C}^{+} c=1 \quad \hat{c}=\hat{c}^{+}=\hat{c}^{-} \\
& \left.C \gamma^{\nu} C=-\gamma^{\mu}\right)^{x} \quad C= \pm i \gamma^{2} \\
& S=\bar{\psi}_{1} \psi_{2} \rightarrow \bar{\psi}_{2} \psi_{1} \\
& P=\bar{\psi}_{1} \gamma_{s} \psi_{2} \rightarrow \bar{\psi}_{2} \gamma_{s} \psi_{1} \\
& V_{\mu}=\bar{\psi}_{1} \gamma_{\mu} \mu_{2} \rightarrow-\bar{\psi}_{2} \gamma_{\mu} \psi_{1} \\
& A_{\mu}=\bar{\psi}_{1} \gamma_{\mu} \gamma_{s} \psi_{2} \rightarrow \bar{\psi}_{2} \gamma_{\mu} \gamma_{s} \psi_{1} \\
& \bar{\psi}_{1} \sigma_{\mu \nu} \psi_{2} \rightarrow-\bar{\psi}_{2} \sigma_{\mu \nu} \psi_{1}
\end{aligned}
$$

$$
\begin{aligned}
& g W_{\mu}^{+} \bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) u \\
& \begin{array}{l}
\frac{P}{g\left(W^{+}\right)^{\mu} \bar{d}\left(\gamma_{\mu}+\gamma_{\mu} \gamma_{5}\right) u=} \\
g w_{\mu}^{+} \bar{d} \gamma^{\mu}\left(1+\gamma_{5}\right) u \\
c^{-} g\left(-W_{\mu}^{-}\right)\left[-\bar{u} \gamma^{\mu} d-\bar{u} \gamma^{\mu} \gamma_{5}^{d}\right] \\
=g W_{\mu}^{-} \bar{u} \gamma^{\mu}\left(1+\gamma_{5}\right) d
\end{array} \\
& =g \omega_{\mu}^{-} \bar{u} \gamma^{\mu}\left(1+\gamma_{j}\right) d
\end{aligned}
$$

NOT DISCUSSED IN THIS LECTURES

4 Inversione temporale T

La meccanica classica è invariante sotto inversione temporale: l'equazione di Newton resta immutata se effettuo la trasformazione $t \longrightarrow-t$.

$$
m \frac{d x^{2}}{d t^{2}}=V(x)
$$

In meccanica quantistica le cose sono più complicate. Riflettiamo anzitutto su cosa è l'inversione temporale. L'evoluzione temporale trasforma certe quantità fisiche \vec{r}, \vec{P}, E dal tempo 0 al tempo t :

$$
\vec{r}(0) \vec{P}(0) E(0) \longrightarrow \vec{r}(t) \vec{P}(t) E(t)
$$

Definiamo una traslazione in avanti nel tempo:

$$
\vec{r}(-T) \vec{P}(-T) E(-T) \longrightarrow \vec{r}(0) \vec{P}(0) E(0)
$$

Questo è un sistema che evolve dal passato al futuro. Il sistema ottenuto dalla operazione di inversione temporale evolve dal futuro al passato, pertanto:

$$
\vec{r}(0) \vec{P}(0) E(0) \longrightarrow \vec{r}(-T) \vec{P}(-T) E(-T)
$$

Per concretezza si considera il processo $\sigma+\sigma \longrightarrow \pi+\pi$. Il processo inverso temporalmente è $\pi+\pi \longrightarrow \sigma+\sigma$. Se il sistema presenta una simmetria sotto inversione temporale i due processi hanno la stessa ampiezza. Se la simmetria è rotta, i due processi hanno una diversa ampiezza.

4.1 Digressione: antiunitarietà

Sappiamo che l'evoluzione temporale per una funzione d'onda è regolata da:

$$
\psi(\mathbf{x}, t)=e^{-i E t} \psi(\mathbf{x}, 0)
$$

Applicando la trasformazione $t \longrightarrow-t$ si ottiene:

$$
\psi \sim e^{i E t} \psi(\mathbf{x}, 0)
$$

Questa espressione è insoddisfacente perché manca il segno - all'esponente. Si osserva però che la ψ^{*} verifica una elazione soddisfacente:

$$
\psi^{*} \sim e^{-i E t} \psi^{*}(\mathbf{x}, 0)
$$

Consideriamo un generico operatore di evoluzione temporale \mathbf{U} e due stati $|A\rangle$ e $|B\rangle$. Gli stati evoluti temporali saranno:

$$
\begin{aligned}
& \left|A^{\prime}\right\rangle=\mathbf{U}|A\rangle \\
& \left|B^{\prime}\right\rangle=\mathbf{U}|B\rangle
\end{aligned}
$$

Generalmente, per conservare le ampiezze di probabilità, si richiede che:

$$
\left\langle B^{\prime} \mid A^{\prime}\right\rangle=\langle B| \mathbf{U}^{+} \mathbf{U}|A\rangle=\langle B \mid A\rangle
$$

ottenendo $\mathbf{U}^{+}=\mathbf{U}$. Nel caso dell'operatore inversione temporale non possiamo procedere in questa maniera. Richiediamo allora che valga:

$$
\begin{equation*}
\left\langle B^{\prime} \mid A^{\prime}\right\rangle=\langle B \mid A\rangle^{*} \tag{12}
\end{equation*}
$$

Un operatore che verifica (12) è detto antiunitario.
Studiamo come si comporta un operatore antiunitario quanto è applicato ad una combinazione lineare di stati. Sia $\left\langle\psi_{j} \mid \psi_{i}\right\rangle=\delta_{i j}$ una base ortonormale. Abbiamo:

$$
\left|\phi_{i}\right\rangle=\mathbf{U}\left|\psi_{i}\right\rangle=\sum_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \mathbf{U}\left|\psi_{i}\right\rangle=\sum_{j} U_{j i}\left|\psi_{j}\right\rangle
$$

dove si è usata la decomposizione dell'identità.
Consideriamo uno stato $|A\rangle$, decomposto in base $\left|\psi_{i}\right\rangle$

$$
|A\rangle=\sum_{i}\left\langle\psi_{i} \mid A\right\rangle\left|\psi_{i}\right\rangle=\sum_{i} a_{i}\left|\psi_{i}\right\rangle
$$

Avremo:

$$
\left|A^{\prime}\right\rangle=\mathbf{U}|A\rangle=\mathbf{U} \sum_{i} a_{i}\left|\psi_{i}\right\rangle
$$

D'altro canto:

$$
\left|A^{\prime}\right\rangle=\sum_{i}\left\langle\psi_{i}^{\prime} \mid A^{\prime}\right\rangle\left|\psi_{i}^{\prime}\right\rangle=\sum_{i}\left\langle\psi_{i} \mid A\right\rangle^{*}\left|\psi_{i}^{\prime}\right\rangle=\sum_{i} a_{i}^{*} \mathbf{U}\left|\psi_{i}\right\rangle
$$

Confrontando si conclude che un operatore agisce su una conbinazione lineare di stati restituendo la combinazione lineare delle immagini degli stati, effettuata con i coefficienti complessi coniugati.

4.2 Determinazione dell'operatore T

Vogliamo determinare una forma per l'operatore di inversione temporale T. Definiamo l'operatore nel modo seguente:

$$
\left(\psi_{T}\right)_{\alpha}=\left(\mathbf{T}^{+} \psi(\mathbf{x}, t) \mathbf{T}\right)_{\alpha}=\tau_{\alpha \beta} \psi_{\beta}^{*}(\mathbf{x},-t)
$$

Quindi:

$$
\left\{\begin{array}{l}
\psi_{T}=\mathbf{T} \psi^{*} \\
\psi_{T}^{+}=\left(\psi^{*}\right)^{+} \mathbf{T}^{+}
\end{array}\right.
$$

Se effettuo due volte l'operazione di inversione temporale, il sistema rimane invariato, pertanto $\mathrm{T}^{2}=\mathrm{I}$.

Vediamo cosa accade alla equazione di Dirac.

$$
\begin{gathered}
(i \not \partial-m) \psi=0 \\
\left(i \gamma^{0} \partial_{0}+i \bar{\gamma} \cdot \bar{\partial}-m\right) \psi=0
\end{gathered}
$$

Coniugando l'equazione e moltiplicando per \mathbf{T}^{2} si ottiene:

$$
\left(-i\left(\gamma^{0}\right)^{*} \partial_{0}-i \bar{\gamma}^{*} \cdot \bar{\partial}-m\right) \mathbf{T} \mathbf{T} \psi^{*}=0
$$

Riconoscendo ψ_{T} e moltiplicando per \mathbf{T}^{+}da sinistra si ottiene:

$$
\mathbf{T}^{+}\left(-i\left(\gamma^{0}\right)^{*} \partial_{0}-i \bar{\gamma}^{*} \cdot \bar{\partial}-m\right) \mathbf{T} \psi_{T}=0
$$

Desidero che per la ψ_{T} valga l'equazione di Dirac seguente:

$$
\left(-i \gamma^{0} \partial_{0}+i \bar{\gamma} \cdot \bar{\partial}-m\right) \psi_{T}=0
$$

Scelgo:

$$
\mathbf{T}=i \gamma^{1} \gamma^{3}
$$

Si può verificare che questa scelta soddisfa i requisiti richiesti e $\mathbf{T}^{+}=\mathbf{T}$, ovvero l'operatore di inversione temporale è hermitiano.

Let $q(\mathbf{x}, t)$ be the Dirac field operator that describes a quark of flavor $q=u, \ldots, t$, $q^{\dagger}(\mathbf{x}, t)$ denotes its Hermitean adjoint, and $\bar{q}=q^{\dagger} \gamma^{0}$. The baryon number operator (36) is

$$
\begin{equation*}
\hat{B}=\frac{1}{3} \sum_{q} \int d^{3} x: q^{\dagger}(\mathbf{x}, t) q(\mathbf{x}, t): \tag{109}
\end{equation*}
$$

and the colons denote normal ordering. Let C, P denote the unitary and T the antiunitary operator which implement the charge conjugation, parity, and time reversal transformations, respectively, in the space of states. Their action on the quark fields is, adopting standard phase conventions,

$$
\begin{align*}
P q(\mathbf{x}, t) P^{-1} & =\gamma^{0} q(-\mathbf{x}, t) \tag{110}\\
P q^{\dagger}(\mathbf{x}, t) P^{-1} & =q^{\dagger}(-\mathbf{x}, t) \gamma^{0} \tag{111}\\
C q(\mathbf{x}, t) C^{-1} & =i \gamma^{2} q^{\dagger}(\mathbf{x}, t) \tag{112}\\
C q^{\dagger}(\mathbf{x}, t) C^{-1} & =i q(\mathbf{x}, t) \gamma^{2} \tag{113}
\end{align*}
$$

$$
\begin{align*}
T q(\mathbf{x}, t) T^{-1} & =-i q(\mathbf{x},-t) \gamma_{5} \gamma^{0} \gamma^{2}, \tag{114}\\
T q^{\dagger}(\mathbf{x}, t) T^{-1} & =-i \gamma^{2} \gamma^{0} \gamma_{5} q^{\dagger}(\mathbf{x},-t), \tag{115}
\end{align*}
$$

where γ^{0}, γ^{2}, and $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ denote Dirac matrices. Then

$$
\begin{array}{r}
P: q^{\dagger}(\mathbf{x}, t) q(\mathbf{x}, t): P^{-1}=: q^{\dagger}(-\mathbf{x}, t) q(-\mathbf{x}, t): \\
C: q^{\dagger}(\mathbf{x}, t) q(\mathbf{x}, t): C^{-1}=: q(\mathbf{x}, t) q^{\dagger}(\mathbf{x}, t):=-: q^{\dagger}(\mathbf{x}, t) q(\mathbf{x}, t): \\
T: q^{\dagger}(\mathbf{x}, t) q(\mathbf{x}, t): T^{-1}=: q^{\dagger}(\mathbf{x},-t) q(\mathbf{x},-t): \tag{118}
\end{array}
$$

With these relations we immediately obtain:

$$
\begin{align*}
P \hat{B} P^{-1} & =\hat{B} \tag{119}\\
C \hat{B} C^{-1} & =-\hat{B} . \tag{120}
\end{align*}
$$

